If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.8x^2-24x+90=0
a = .8; b = -24; c = +90;
Δ = b2-4ac
Δ = -242-4·.8·90
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{2}}{2*.8}=\frac{24-12\sqrt{2}}{1.6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{2}}{2*.8}=\frac{24+12\sqrt{2}}{1.6} $
| 4(2x-3)+6(8x-9)=32x+9 | | 6x^2-18x-86=0 | | -5/3x=-2 | | 21x-18=8x+10 | | 6s+53+73=180 | | -5x^2+25x+30=0 | | 3x*7=2x-5 | | 2.07+24x=33.03 | | 2(6x-4)+4(3x-2)=9(1x-8)+7(x-4) | | 856.50+24.75x=1128.75 | | 8x+9(3x-4)-4(6x-2)=8x-9 | | 3(1y+2)=-3 | | 45.67=x+19.99 | | 6(3x+1)-30=3(x-4) | | 5-(0x=9 | | 7^(x+1)=55 | | (2x-6)(x-2)=756 | | x+45+78=180 | | 8x-18+110+40=180 | | x+107+44=180 | | x+48+77=180 | | 3x+9+33+90=180 | | x+58+41=180 | | x+71+64=180 | | x2-10+x+58=180 | | 5x-8+36+62=180 | | W^2+7w-58=0 | | y-18y=17 | | 21=5w-9 | | x+58+45=180 | | 9x+6-3x=-6x-17+x | | x+103+47=180 |